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Abstract 
There has been a constant barrage of worms over the 
internet during the recent past.  Besides threatening 
network security, these worms cause an enormous 
economic burden in terms of loss of productivity at the 
victim hosts.  In addition, these worms create unnecessary 
network data traffic that causes network congestion, 
thereby hurting all users. To develop appropriate tools for 
thwarting quick spread of worms, researchers are trying to 
understand the behavior of the worm propagation with the 
aid of epidemiological models.  In this study, we apply the 
classical SIS model and a modification of SIR model to 
simulate worm propagation in two different network 
topologies.  Whereas in the SIR model once a node is 
cured after infection it becomes permanently immune, our 
modification allows this immunity to be temporary, since 
the cured nodes may again become infected, maybe with a 
different strain of the same worm. The simulation study 
also shows that time to infect a large portion of the 
network vary significantly depending on where the 
infection begins.  This information could be usefully 
employed to choose hosts for quarantine to delay worm 
propagation to the rest of the network. 
 
1. Introduction 
 

Lately, computer worms have become a major problem 
for the security of computer networks, causing consid-
erable amount of resources and time to be spent recovering 
from virulent attacks. In general, worms, defined as self-
propagating codes, have been developed since the Morris 
worm arose in 1988 [4]. The convenience of Internet 
makes it more vulnerable for malicious Internet exploits. In 
other words, the Internet has become a powerful means for 
propagating malicious programs like computer viruses and 
worms. In the area of virus and worm modeling, many 
studies have employed simple epidemiological models to 
understand general characteristics of worm’s propagation. 
Epidemiologic propagation models have traditionally been 
used to understand and model the spread of biological 
infectious diseases [2, 5]. A constant infection rate is 
reasonable for modeling epidemics but may not be valid 
for real Internet viruses and worms. The reason is that most 

classical epidemic models are homogeneous, in the sense 
that an infected host is equally likely to infect any of the 
susceptible hosts while Internet is non-homogeneous. In 
addition, current propagation studies have not considered 
the real Internet topology data and exploited characteristics 
of the network topology.  

Previous works on worm modeling neglect the impacts 
of multiple worm outbreaks on our computer networks. 
Nowadays, new network worms will continue to be created 
while the strains of old worms will continue to circulate 
around the Internet. Recently, the Blaster worm, known as 
MSBlast or LoveSAN, has infected an estimated 188,000 
systems running Microsoft operating systems that are 
unpatched for the so-called RPC vulnerability [13]. It is 
noted that 188,000 infected hosts is a substantial rate of 
infection, though the several hundred thousand hosts may 
be still infected by other old Internet worms including 
Slammer, Code Red and Nimda. Thus, any proposed 
defense mechanism must be evaluated in handling many 
active worms simultaneously. Wang et al [9] considers 
permanent or static immunization where a node once 
immunized is permanently protected. In reality, immuniza-
tion must be taken as temporary due to multiple worm 
outbreaks since a computer being recovered from a certain 
worm can be reinfected by other worms immediately. In 
other words, any computer could not be permanently 
immune to many Internet worms.  

In order to defend against future worms, we need to 
understand the network characteristics of worm spreading. 
Clearly the effect of factors such as the rate and pattern of 
infection, the underlying network topology, and human 
countermeasures in the network must be well understood 
before the model of Internet worm propagation could be 
developed.  Certain nodes of the Internet are well protected 
compared with the others.  Moreover, at certain vital 
installations the rates at which infections are cured are 
higher compared with others.  To model these real world 
phenomenons we have taken into account in our 
simulations variable infection rates and variable cure rates.  

Also in this paper, with real Internet topology data, we 
find that there are two effective factors that influence 
worm propagation: temporary immunization time and 
network delays. We note that our simulation results can 
explain how fast a virulent worm can spread and suggest 
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effective mechanisms to monitor and defend against the 
propagation of worms. It also shows that we can find 
location(s) in the network that when quarantined would 
slow down the rage of spread. 

The rest of the paper is organized as follows. Section 2 
reviews the several related works. In Section 3, we give a 
brief review of the classical epidemic models and point out 
their limitations to model Internet worm propagation. In 
Section 4 and 5, we show the simulation results based on 
different network topologies. We conclude the paper with 
an outline of our future work in section 6. 
 
2. Related Work 
 

In epidemiology research, there exist several determinis-
tic and stochastic models for virus spreading. About ten 
years ago, Kephart and White [3] presented the Epi-
demiological model (SIS) to understand and control the 
prevalence of viruses. This model is based on biological 
epidemiology and uses nonlinear differential equations to 
provide a qualitative understanding of virus spreading.  

The Code Red worm incident of July 2001 has been 
investigated to model and analyze Internet worm 
propagation [1]. Based on the classical epidemic models, 
Zou et al [8] introduced a new general Internet worm 
model called two-factor worm model: one is the effect of 
human countermeasures against worm propagation; the 
other is the slower worm infection rate due to Internet 
congestion caused by Code Red worm. 

Chen et al [10] present a model, referred to as the 
Analytical Active Worm Propagation (AAWP) model that 
characterizes the propagation of worms that employ 
random scanning. The AAWP model shows that the model 
can be applied to monitoring, detecting and defending 
against the spread of active worms in comparison of 
Weaver’s simulation [11,12]. 

Wang et al [16] introduced an analytic model to capture 
the impact of underlying topology in computer viral 
propagation. They assume that an infection rate for each 
edge and a cure rate for each infected node are constant. In 
addition to the spread of a virus in real network, Wang and 
Wang [17] investigated the model extending the classical 
epidemic model by including two specific parameters: 
infection delay and user vigilance time.  The infection 
delay is a period of time between the arrival of a virus on 
certain node and further infection from that node. The user 
vigilance time is the immune time. We examined several 
major characteristics of infection, including the variant rate 
and pattern of infection through the different network 
topologies and the rate of re-infection at individual nodes 
during an attack. We use a discrete time model and 
deterministic approximation to describe the spread of 
Internet worms. 
 
 

3. Worm Propagation Models 
 
We introduce two classical deterministic epidemic 

models and an extension of one of models, which are the 
basis of our experimental design. We also point out their 
limitations when we try to use them to model Internet 
worm propagation. In classical epidemic model, it is 
defined that a host is called an infectious host at time t if it 
has been infected by virus before t. A host that is 
vulnerable to virus is called a susceptible host. We define 
that the temporary immunity is a temporary hold on a 
worm spreading, which means that many hosts will be 
susceptible or infected by new worm outbreaks at time t 
though they are already immune to old worm that came out 
before time t. 

 
3.1. Classical Simple Epidemic Model 
 

In classical simple epidemic model, each host stays in 
one of two states: susceptible or infectious. Each 
susceptible host becomes an infectious one at a certain rate. 
At the same time, infectious hosts are cured and become 
again susceptible at a different rate. This model system 
where having the infection and being cured does not confer 
immunity. This model is called the SIS model. Using the 
terms defined in Table 1, the differential equation for the 
SIS model is 

 

 
dt

tdI )(  = βI(t)[N – I(t)] - δI(t)  (1) 

dt

tdS )(  = -βS(t)[N – S(t)] + δ[N – S(t)] 

The solution to the Equation 1 is 
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We conclude that, as t → ∞, 
  

I∞ = N - ρ    (3) 
where ρ = δ/β and I0 is the initial number of infectious 
hosts. Therefore, not absolutely all the population gets 
infected. This shows that each infectious host infects on 
average β others per unit time. However, the probability 
that a host becomes infected is not the same for every host 
 

Table 1. Notations of worm epidemic models 
 

Notation Definition 
N 
S(t) 
I(t) 
R(t) 
β 
δ 
λ 
µ 
ρ 

Size of total vulnerable population 
Number of susceptible hosts at time t 
Number of infectious hosts at time t 
Number of removed infectious hosts at time t 
Infection rate 
Curing rate on an infectious host 
Removal rate on an infectious host 
Re-susceptible rate on a removed host 
Epidemic threshold 
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because it is a function of their connectivity and the 
infection characteristics with a certain cure rate. We note 
that the probabilities per unit time of infection and of cure 
are independent. Once a host is cured, it is immediately 
capable of being reinfected. The SIS model does not take 
into account the possibility of individual’s removal due to 
death or immunization which would lead to the so-called 
Susceptible-Infectious-Removed (SIR) model [6, 9]. It also 
does not model secondary effects such as reduced infection 
rate due to network congestion when many hosts are 
infected [8]. 
 
3.2 Kermack-Mckendrick Model 
 

In epidemiology modeling, Kermack-Mckendrick model 
considers the removal process of infectious hosts [6]. This 
model is called the classical SIR epidemic model. Each 
host is assumed to be in one of three states: Susceptible (S), 
Infectious (I), and Removed (R). 
 

  
dt

tdI )(  = βS(t)I(t) - γI(t) 

 
dt

tdS )(  = -βS(t)I(t)    (4) 

 
dt

tdR )(  = γI(t)   

 

where β is the infection rate; γ is the rate of removal; N is 
the size of vulnerable population. 

The Kermack-Mckendrick model improves the SIS 
epidemic model by considering that some infectious hosts 
are immune, are placed in isolation, or have died. However, 
this model is still not suitable for capturing the effect of 
multiple worm propagation simultaneously. First, in the 
Internet, many new viruses and worms come out every day 
though most of them disappear due to human countermea-
sures. In other words, many hosts will be susceptible or 
infected by new virus outbreaks at time t though they are 
already immune to recovered old virus that came out 
before time t. The link delays required for the infection to 
travel to the hosts are captured in the aggregate value 
called infection rate. While such gross estimates are correct 
for long lasting worms, it does capture neither the short 
lived ones nor the vulnerability of nodes which are 
reachable quickly. 
 
3.3 An Extension for the SIR Model 
 

We assume that a more general case, allowing for loss of 
immunity that causes recovered hosts to become 
susceptible again. In other words, a portion of the removed 
hosts a time t, R(t), due to loss of immunization join the 
susceptible population at time t + τ, S(t+τ). Therefore a 
portion of population dynamically changes from suscep-
tible to infectious, to removed and back to susceptible. 

Model that describes such an epidemical cycle is referred 
to as SIRS model. 

Our model is a generalization presented in [7], allowing 
hosts recovering from the infective to go into a temporarily 
immune state rather than directly back into the susceptible 
state. Let µ be the rate at which removals loose the 
immunization and becomes susceptible. Using the same 
notation as the SIR model we obtain the following 
deterministic SIRS model: 

 

)()()(
)(

tRtStI
dt

tdS µβ +−=  

)()()(
)(

tItStI
dt

tdI λβ −=    (5) 

)()(
)(

tRtI
dt

tdR µλ −=  

 

Also, we have S(t) + I(t) + R(t) = N, ∀t ≥ 0. We can supply 
the same initial conditions as with the SIR model and 
numerically solve the SIRS model. Let ρ = λ/β be the 
epidemic threshold and I0 and S0 are the initial fraction of 
infectious hosts and of susceptible hosts, respectively. For 
the epidemic to occur, we must have: 
 

0| =tdt
dI

> 0 → βS0I0 - λI0 > 0 → S0 > β
λ

  (6) 
 

Clearly S0 must satisfy this condition for the epidemic to 
occur. The Eq. 6 indicates that no epidemic occurs if the 
initial number of susceptible hosts is smaller than the 
epidemic threshold, S0 < ρ. This important result of the 
threshold effect is the same as what was already discovered 
by Kermack and McKendrick [6]; the population must be 
“large enough” for a disease to become epidemic. 

Figure 1 compares the number of infectious, susceptible, 
and removed hosts as a function of time as obtained from 
Eq. 5. We attempt to solve this model using the numerical 
capabilities of MAPLE (mathematics software) without 
finding an explicit function-formula for the number of 
susceptible, infectious and removed hosts.  

 

 
 
Figure 1. SIRS epidemic model; it shows the 
number of infectious, susceptible, and removed 
hosts as a function of time 
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The graph contains 100 hosts and the infection, removal 
and re-susceptible rates are β = 0.5 and λ = 0.2, µ = 0.07 
respectively. It shows that the number of infectious hosts is 
initially exponentially increased up to about 80% of total 
population and then decreasing the growth of infection 
population. It is also observed that the infection growth 
will reach to a stable equilibrium after an amount of time 
passes. 

While there is a vast literature covering models in which 
the “temporary immunity” step is not considered (i.e., SIS 
models and SIR models), comparatively little work has 
been done to understand how the nature of the R → S 
transition affects the dynamics of an epidemic of Internet 
worms. With regard to the loss of immunity we consider 
two different types of worm behaviors, depending on 
parameters: (i) periodic epidemic outbreaks and (ii) one or 
more extended outbreaks followed by extinction of the 
epidemic due to stopping spreading of old worms. We note 
that instead of acquiring infinite immunity to a specific 
epidemic, infected hosts in this model spend a constant 
number of time steps in a generalized immune state before 
returned to the susceptible population. We have to 
investigate the SIRS model with immunity lasting non-
constant time step since hosts can be significantly delayed 
in the removed state by mechanisms such as a large 
constant period of temporary immunity. 
 
4. Simulation and Analysis 
 

In this section we present measurements of worm 
infections in two different network topologies with random 
rates at which an infectious node attempts to infect its 
neighboring nodes and random rates at which it protects 
itself or remove viruses itself. These experiments provide 
insight into the characteristics of infection propagation on 
computer networks and they also serve as the basis for 
future research work on quarantine of virulent Internet 
worms. 
 
4.1. Random Transit-Stub Model without 
Topology Constraint 
 

Our experiments have been conducted using a 
simulation environment that is capable of simulating 
hundreds of computing nodes with random network 
topology and any viral epidemic model. The network 
topology that is used in this simulation is constructed by 
Transit-Stub model that produces hierarchical graphs in a 
different way by consisting of interconnected transit and 
stub domains [14]. In this experiment we do not consider 
the topology constraint such as infection delay time when 
infective messages are able to reach a susceptible node. 
Instead, the infection process was simulated by varying the 

connectivity of topology, the number of nodes, and the rate 
of infection β and cure δ. 
 
4.2. System Model 
 

We consider a network with 100 nodes and two 
simulation scenarios. The first one is cured and infection 
case (CI strategy), the same as the one used in the classical 
simple SIS model, in which an infectious node determines 
whether it can be cured of infection or not before infecting 
any of susceptible nodes connected to it. The second one is 
infection and cured case (IC strategy) where an infectious 
node determines whether it can be cured or not after 
infecting any of susceptible neighboring nodes. We also 
analyzed the worm epidemic model with two different 
infection and cure rates: one is constant infection/cure rate 
at which an infectious node is equally likely to infect any 
of other susceptible nodes and to be cured of infection. The 
other one is variant infection/cure rate at which certain 
infectious nodes are likely to infect more susceptible nodes 
than other infectious nodes do. In addition, the rate of 
infection is associated with each of edges. Similarly, the 
rate of cure of infection is related to each node. 

A few assumptions and simplifications were made to 
ensure feasibility of our experiment. First, a single initially 
infected node is randomly selected to release worm in each 
trial and we performed 500 simulation runs using same 
parameters. Second, a desired random graph has average 
degree of 5 on each node. In addition, relevant data is 
recorded per unit time and simulation stops when some 
desired state is reached, such as all nodes are infected or 
expiration of simulation. 
 
 4.3. Initial Results 
 

Figure 2 shows the total number of infectious nodes 
averaged across the 500 runs of the two different types of 
simulation models. Note that the number of infectious 
nodes quickly reaches to almost 80% of the total 
population, and the infection growth slows down after that. 
This result is consistent with the results in simulation 
presented by Kephart [2]. Also considerable fraction of the 
nodes in a transit-stub network remains uninfected for long 
periods of time due to their connectivity. Comparing the 
two different epidemic strategies between constant 
infection/cure rate and non-constant infection/cure rate, we 
note that there is a slightly difference between these two 
strategies as shown in Figure 2 (a) (b). Also more rapid 
propagations were observed when different infection and 
cure rates are assigned to different nodes. Figure 2 (c) 
shows the total number of infectious nodes averaged over 
time with various temporary immunization times. As 
defined in section 3, we account for the temporary 
immunization time as the time period to protect the same 
infective messages from infectious nodes until new worm 
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Figure 2. Comparison of the number of infectious nodes as a unit time in two different epidemic 
strategies; N = 100, (a) with constant rates, β = 0.5, and δ = 0.2 (b) with non-constant rates (c) with 
constant rate and various temporary immunization times 
 
comes out during a worm infection. We note that the 
difference of time between two worm outbreaks is referred 
to as the temporary immunization time. For instance, if an 
infectious node is cured of infection and takes 10 unit 
temporary immunization times at time t, it could be 
susceptible or reinfected by other worms at time t + 10. 
Results of these experiments show that for a given 
epidemic model the longer temporary immunization time, 
the wider will be the variation in infection growth. It is 
also observed that the infection growth of any type of 
propagation will reach to a stable equilibrium after an 
amount of time passes, which is consistent with the 
numerical solution obtained from SIRS model.  
 
5. Internet Worm Propagation with Topology 
Constraint  
 

We extend our simulation methodology to include a 
realistic network model and evaluate the impact of 
topological constraints. After infecting a susceptible node, 
a worm attempts to infect other susceptible nodes with 
infection delay time which is the time to find its target 
nodes; it may attempt to only infect a small number of 
other susceptible nodes corresponding to network 
topological criteria, such as connectivity of network. In 
addition, we focus on the behavior of Internet worm 
propagation in response to multiple worm outbreaks. We 
model the impact of multiple active worms by specifying 
the temporary immunization time under which an infected 
node could be immune to the same type of worm after 
being cured.  
 
5.1. Network Model 
 

In this section, we describe the experimental network 
model of Internet worm infection using real Internet data 
set (round trip time (RTT) data) called topology constraint. 
In this study, we obtain network topology data (e.g. RTT 
data and traceroute) from the NLANR Active 
Measurement Program (AMP) [18]. Our network model 
consists entirely of 130 active measurement nodes 

provided by AMP. Each node is connected to the global 
network shown in Abilene network topology [19]. 

 

 
 
Figure 3 The Abilene Network Topology including 
Abilene core nodes, connectors and some of 
participants [19] 
 
5.2. Simulation and Results 
 

For our simulation, we set the discrete interval time into 
one millisecond (ms), the maximum simulation time for 
trial to 127 ms corresponding to the maximum RTT value 
observed from AMP. For Internet worm epidemic model 
we assume that the infection rate β and the cure rate δ are 
the same as what are applied in the classical epidemic 
model. Figure 4 shows the result for the comparison of the 
total 60% infection times as the starting node in Internet  
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Figure 4. Comparison between the total times to 
infect 60% of total population vs. the starting 
node in a worm spreading with constant cure rate 
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worm propagation, obtained from 500 runs of the 
simulation for our network topology model. We note that 
some variation exists in the time to infect a large portion of 
the network. The fastest total time to infect 60% of total 
participant hosts is 61ms when Indiana University is 
infected first and the longest was 125ms when University 
of Alaska was infected first. As shown in Figure 3, Indiana 
University is considered as the center of Abilene backbone 
network as well as one of Abilene connectors connecting 
directly to the Abilene network while University of Alaska 
is just participant located away from the central point of 
the Abilene network. 

We also measured the total number of re-infections that 
each participant host experienced during a worm infection 
in order to validate whether the structure of network 
topology has great influence on infection propagation. 
Figure 5 shows the result for the number of re-infections 
for each of the 130 participant belonging to Abilene 
network. We see that some number of the hosts is 
reinfected much more than others. For example, Indiana 
University is attacked 86 times on average, while Wayne 
state university is attacked 41 times only. 
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Figure 5. Counting the total number of re-
infections at each participant host 

 
It may be pointed out that for a given topology we might 

slow down the growth of Internet worm infection if we 
find critical locations where some nodes are more prone to 
being attacked more than others. Moore et al [15] 
investigated the containment system using address 
blacklisting and content filtering to minimize worm 
propagation in the Internet.  The simulation system we 
have performed could identify addresses to be blacklisted. 
 
6. Conclusion 
 

In this paper we have presented measurements of worm 
infections in two different network topologies with 
constant or non-constant infection and cure rates. We 
extended our simulation methodology to include a real 
Internet network model and evaluated the impact of 
topology constraints. We are also working on the 
development of effective quarantine techniques using the 
knowledge of worm propagation.  
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